Trabalho 168

DETERMINAÇÃO DA ANÁLISE IMEDIATA DO EUCALIPTO POR TERMOGRAVIMETRIA

Walbert Chrisostomo¹; Fábio M.Yamaji²; Hiroyuki Yamamoto³; Antonio J. F. Carvalho¹
¹EESC/USP, ²UFSCar, ³NU/Japão
w.chrisostomo@usp.br

1. INTRODUÇÃO

O conhecimento da cinética de combustão da biomassa é essencial para a compreensão e modelagem de fornos e caldeiras industriais. Tal conhecimento é também necessário para o projeto e operação de sistemas de conversão (SZEMMELVEISZ K. et al., 2009). Isso investigações motivou uma série de com experimentais análise base na termogravimétrica. informações Muitas podem ser obtidas a partir da análise termogravimétrica, por exemplo, parâmetros cinéticos, estabilidade térmica transformação de fase durante a pirólise e combustão da biomassa (ZABANIOTOU A. et al., 2008). As medidas dinâmicas da análise termogravimétrica produzem equivalentes a uma análise imediata. A análise imediata de um combustível sólido determina o teor de água do material (umidade), o teor de material que se queima no estado gasoso (volátil), no estado sólido (carbono fixo) e o teor de material residual após a combustão (cinzas). Essas determinações, no entanto, demoram e requerem uma quantidade significativa de equipamentos de laboratório. Um método alternativo para realização da análise imediata é a análise termogravimétrica. As condições definidas desta técnica de análise térmica, como, amostras com menores dimensões, temperatura rápida e controle da atmosfera, reduzem o tempo de análise, bem como os equipamentos necessários. O objetivo deste trabalho foi a determinação da análise imediata do Eucalipto através da análise termogravimétrica.

2. MATERIAL E MÉTODOS

As amostras de Eucalipto utilizadas neste estudo, da espécie *Eucalyptus grandis*, foram obtidas a partir de resíduos de indústria madeireira. As amostras foram secas em

estufa a 105°C e separadas em peneiras. Foram utilizadas nas análises, amostras com granulometria na faixa de 40 a 60 mesh.

As análises termogravimétricas foram realizadas em um equipamento da marca Perkin Elmer, modelo Pyris 1 TGA, sob atmosfera de ar sintético, a uma vazão constante de 20 ml/min. As análises foram realizadas a partir da temperatura ambiente, com aquecimento até 800 °C, com diferentes taxas de aquecimento: 5°C/min, 10°C/min, 15°C/min e 20°C/min. Optou-se por realizar o processo a baixas taxas de aquecimento, de maneira a definir bem as etapas de degradação do material.

A análise imediata com aquecimento em mufla das amostras de Eucalipto foi realizada de acordo com as normas ASTM E872 e ASTM E1755. A Figura 1 mostra o momento da análise com aquecimento em mufla.

Fig. 1: Análise Imediata em Mufla.

3. RESULTADOS E DISCUSSÃO

O processo de combustão da biomassa é normalmente dividido em três fases, a evaporação da água, remoção e queima de materiais voláteis, e combustão do carbono fixo (SZEMMELVEISZ K. et al., 2009). As curvas termogravimétricas das amostras do Eucalipto, obtidas por diferentes taxas de aquecimento são apresentadas na Figura 2.

Trabalho 168

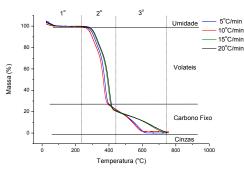


Fig. 2: Curvas TG do Eucalipto com diferentes taxas de aquecimento.

As curvas de decomposição podem ser observadas pelas linhas verticais pontilhadas. A primeira fase, temperatura abaixo de 200 ⁰C, corresponde ao período de secagem, onde ocorre a evaporação da água durante toda a fase. A próxima etapa, representada pela segunda fase de decomposição, ocorreu entre 250 e 450 °C, correspondendo a uma diminuição significativa em massa das amostras devido à liberação de materiais voláteis a partir da decomposição térmica da hemicelulose, celulose e parte da lignina. Para a terceira fase, a perda de massa não é tão significativa como na fase segunda, devido à decomposição dos componentes restantes, principalmente a lignina. O teor de cinzas é determinado pela combustão do carbono fixo (char). Os resultados da análise imediata do Eucalipto por análise termogravimétrica com diferentes taxas de aquecimento estão apresentados na Tabela 1.

Tab. 1: Resultados da Análise Imediata do Eucalipto obtidos por TGA com diferentes taxas de aquecimento.

	Voláteis	Carbono Fixo	Cinzas
	(%)	(%)	(%)
5°C/min	73,59	25,52	0,89
10°C/min	73,90	25,89	0,21
15°C/min	79,05	20,63	0,32
20°C/min	80,41	19,24	0,35

A taxa de aquecimento na análise termogravimétrica influenciou nos resultados obtidos. O aumento da taxa resultou em um maior teor de voláteis e um menor teor de carbono fixo das amostras de Eucalipto. Os resultados obtidos com a taxa de 20°C/min foram os mais próximos dos obtidos pela análise por aquecimento em mufla.

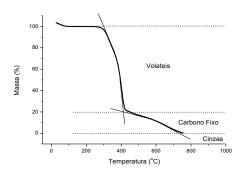


Fig. 3: Curvas TG do Eucalipto com diferentes taxas de aquecimento.

Os resultados obtidos nas análises imediatas do Eucalipto pelo método termogravimétrico e de aquecimento em mufla são apresentados na Tabela 2.

Tab. 2: Resultados da Análise Imediata do Eucalipto obtidos pelo método da Mufla e por TGA.

	TGA	Mufla
Voláteis	80,41%	83,62 %
Carbono Fixo	19,24%	16,06 %
Cinzas	0,35%	0,32 %

4. CONCLUSÕES

Os resultados deste estudo mostraram que é possível a utilização da análise termogravimétrica para determinação da análise imediata do Eucalipto. A taxa de aquecimento na análise termogravimétrica influencia nos teores de materiais voláteis e carbono fixo do material, podendo ser ajustada a fim de obter resultados próximos aos obtidos em análise imediata por aquecimento em mufla.

5. BIBLIOGRAFIA

SZEMMELVEISZ K. et al. Examination of the combustion conditions of herbaceous biomass. **Fuel Processing Technology**, v.90, p.839-847, 2009.

ZABANIOTOU A. et al. Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass. **International Journal of Hydrogen Energy**, v. 33, p. 2433-2444, 2008.